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Section 1: k-graphs and coloured graphs

k-graphs and coloured graphs




Definition

Definition

Let k € N={0,1,2,...}. A graph of rank k or a k-graph is a
countable category A equipped with a functor d : A — Nk,
called the degree functor satisfying the following factorisation

property:
for all A € A and m,n € N¥ such that d()\) =

m + n there are unique elements p € d~*(m) and
v € d71(n) such that A\ = uv.




Examples

> E = (E° E' r,s) adirectd graph. Recall
E* = {finite paths} — a category under concatenation.
Put d(e1ex---e,) =n. If d(ey---e,) = m+n, so
p = m+ n, have unique factorisation
(e1...em)(ems1---€,). So (E*,d) is a 1-graph.
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Examples

> E = (E° E' r,s) adirectd graph. Recall
E* = {finite paths} — a category under concatenation.
Put d(e1ex---e,) =n. If d(ey---e,) = m+n, so
p = m+ n, have unique factorisation
(e1...em)(€ms1---€). So (E*, d) is a 1-graph.

» N¥ with d =id : NK = N¥ is a k-graph.

» Define Qy := {(m,n) € Nk x N : m < n}. Put
r(m,n) = (m, m), s(m,n) = (n,n),
(m, n)(n, p) = (m, p), and d(m,n) = n—m.
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Notation

v

A" := d~(n).
r(A) :=ideoa(r) € A% and s(A) := idgom(n) € A°.
» For E C A and v € A%, we write
vE :={A€ E:r(\)=v} and
Ev.={\A€ E:s(\)=v}.
> If A= NN\ with d(V) = m and d(\") = d(}) — n,
define A\(m, n) .= \".

v




Elementary facts

Definition (Again)

Let k € N={0,1,2,...}. A graph of rank k or a k-graph is a
countable category A equipped with a functor d : A — Nk,
called the degree functor satisfying the following factorisation
property:

for all A € A and m,n € N¥ such that d(\) =
m + n there are unique elements p € d~*(m) and
v € d71(n) such that A\ = uv.
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Elementary facts

Definition (Again)

Let k € N={0,1,2,...}. A graph of rank k or a k-graph is a
countable category A equipped with a functor d : A — Nk,
called the degree functor satisfying the following factorisation
property:

for all A € A and m,n € N¥ such that d(\) =
m + n there are unique elements p € d~*(m) and
v € d71(n) such that A\ = uv.

Lemma. A% = {id, : v € Obj(A)}.
Lemma. A™ ., A" = A™TP,

Cor. A% .x, NS = N9 x, N\,




Two-coloured graphs

Prop (Kumjian—Pask). Given graphs E;, E; with common
vertex set E0 E?, and given an isomorphism

012 @ E1 %, Ex = Ep o, B,

there is a unique 2-graph with A® = E? = E?, A% = E}, and
with ef = f’e’ whenever 615(e, f) = (f’, N.

Eni




Two-coloured graphs

Prop (Kumjian—Pask). Given graphs E;, E; with common
vertex set EY = EJ, and given an isomorphism

0o 0 BE1 sxr BEx = E5 %, E,

there is a unique 2-graph with A® = E? = E?, A% = E}, and
with ef = f’e’ whenever 615(e, f) = (f’, N.

Idea of proof: take path category of (EY, E} U Ej, r,s).
Quotient by aef B ~ af’e’f whenever 615(e, f) = (f', €).
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Given fgh € A with f € A%, g € A% and h € A®, factorisation
gives:
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Associativity

Given fgh € A with f € A%, g € A% and h € A®, factorisation
gives:

fgh = gifih = g1hif, = hagats
— fhlgl — h2f1g1 — h2g2f‘2
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Associativity

Given fgh € A with f € A%, g € A% and h € A®, factorisation
gives:

fgh = gifih = g1hif, = hagats
— fhlgl — h2f1g1 — h2g2f‘2
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Associativity

Given fgh € A with f € A%, g € A% and h € A®, factorisation

gives:

fgh = gihih = gimf = hygofs
— fhlgl — h2f1g1 — h2g2f‘2

 r+——7—"9 o t+——F9
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Associativity in A says f, = 2, g = g2, hy = h*.




An example

Is this associativity automatic whenever we have isomorphisms
EixE; = E;jxEfori<ij<k?




An example

Is this associativity automatic whenever we have isomorphisms
EixE; = E;jxEfori<ij<k?
No. Example due to Spielberg:
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Coloures graphs and squares

Okay, what if we require 0 satisfying the right sort of
associativity




Coloures graphs and squares
Okay, what if we require 0 satisfying the right sort of
associativity
Definition
A complete and associative collection of squares for a
E, ..., Ex is a collection of isomorphisms
i : Ej %, E; = Ej o%, Ej such that 0; = 49,}_-1 and if we write
ef = f'e’ when 0;(e, f) = (f', '), then if fgh is a tri-coloured
path and

fg ~ g1fl, fih ~ hifs, gihi ~ hgo,
gh~ h'g', fh' ~ ' and flgt~ g?f?,

then f, = 2, go = g2 and h, = h°.




Coloures graphs and squares
Okay, what if we require 0 satisfying the right sort of
associativity
Definition
A complete and associative collection of squares for a
E, ..., Ex is a collection of isomorphisms
i : Ej %, E; = Ej o%, Ej such that 0; = 0,-}_-1 and if we write
ef = f'e’ when 0;(e, f) = (f', '), then if fgh is a tri-coloured
path and

fg ~ g1f1, fih ~ hifs, gihi ~ hgo,
gh~ h'g', fh' ~ ' and flgt~ g?f?,

then f, = f2, go = g% and h, = h?.

Theorem (Fowler-S, Hazelwood—Raeburn— S—Webster)‘.;
Every complete and associative collection of squares
determines a k-graph and conversely.




|dea of proof

Inductively show that every path determines an entire

commuting diagram.
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Inductively show that every path determines an entire

commuting diagram.

|dea of proof
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Section 2: Constructions

Constructions




Cartesian products, pullbacks

(A, d) a k-graph and (N, d’) a k’-graph.
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(A, d) a k-graph and (N, d’) a k’-graph. Take A x A
Coordinatewise operations, and dp(A, \') = (d()\), d'(N)).
This is a (k + k')-graph. The Cartesian-product

(k + k’)-graph.
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Cartesian products, pullbacks

(A, d) a k-graph and (N, d’) a k’-graph. Take A x A
Coordinatewise operations, and dp(A, \') = (d()\), d'(N)).
This is a (k + k')-graph. The Cartesian-product

(k + k’)-graph.

(A, d) a k-graph, f : N — N9 a semigroup homomorphism.
Put f*A = {(\,m) € A x N': f(m) = d()\)}, with

d(A\, m) = m, pointwise operations. This is an /-graph: the
pullback I-graph.




Skew products, crossed products

A a k-graph, G a discrete group, ¢ : A — G multiplicative.




Skew products, crossed products

A a k-graph, G a discrete group, ¢ : A — G multiplicative.
Put (A x. G) = A x c with r(\, g) = (r(}A), g),

s(A. g) = (s(), gc(A)). Put (A, g)(1, gc(N)) = (A, g), and
d(\, g) = d()\). This is a k-graph: the skew-product k-graph.
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d(\, g) = d()\). This is a k-graph: the skew-product k-graph.

A a k-graph, Z' acting on A by automorphisms.




Skew products, crossed products

A a k-graph, G a discrete group, ¢ : A — G multiplicative.
Put (A x. G) = A x c with r(\, g) = (r(}A), g),

s(A. g) = (s(), gc(A)). Put (A, g)(1, gc(N)) = (A, g), and
d(\, g) = d()\). This is a k-graph: the skew-product k-graph.

A a k-graph, Z' acting on A by automorphisms. Put

A xZ'= N xZ with r(\, n) = r(\), s(\, n) = a_,(s()\)). Put
(N, m)(u, n) = (Aam(p), m+ n). Thisis a (k + /)-graph: the
crossed-product k + I-graph.




Section 3: Dynamics and aperiodicity

Dynamics and aperiodicity




Infinite paths

We assume from now on that A is row-finite (each vA" is
finite) and has no sources (each vA" is nonempty).
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An infinite path is a degree-preserving morphism x : Q, — A:
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Infinite paths

We assume from now on that A is row-finite (each vA" is
finite) and has no sources (each vA" is nonempty).

An infinite path is a degree-preserving morphism x : Q, — A:

v w v w 4 w

v wl v wli v owl
c d c d c d c d
v w b v 2 bYaybyv

b v w v w v w

ac~da’, a'c~da, bd~cb b Y a bYayY b
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Infinite paths

We assume from now on that A is row-finite (each vA" is
finite) and has no sources (each vA" is nonempty).

An infinite path is a degree-preserving morphism x : Q, — A:

vt « 't
c d c d c d
El b Y aybyvay by
v w| v w| v] w
c d c d c d c d
v w b v 2 bYaybyv
b 1% w % w v w
ac~da’, a’c~da, bd~ch Cb ‘da Cb ‘da, 'cb d
vioow v ow v w

Then A = {infinite paths} is a locally compact Hausdorff
totally disconnected space with topology generated by
Z(A) ={x:x(0,d(N\)) = A}




Shift maps

The semigroup N¥ acts by local homeomorphisms of A>:

aP(x)(m,n) = x(m+ p, n+ p).
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Say A is aperiodic if its shift is topologically free: for a dense
set of x, 0™(x) = ¢"(x) implies m = n.
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Examples: 1-graph aperiodic iff every cycle has an entry.
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Shift maps

The semigroup N¥ acts by local homeomorphisms of A*:
aP(x)(m,n) = x(m+ p, n+ p).

Note 0P : Z(\) = Z(A(0, d(N))) if d(\) > p.
(A, o) is the higher-rank shift of A.

Say A is aperiodic if its shift is topologically free: for a dense
set of x, 0™(x) = ¢"(x) implies m = n.

Examples: 1-graph aperiodic iff every cycle has an entry.

A x I aperiodic iff A, aperiodic

f*N rarely aperiodic: f(m) = f(n) forces o™ (x) = o"(x) for
all x € (f*N)°.

A x4 Z* is always aperiodic.

A x Z! aperiodic if {A aperiodic and Z' ~ N> free +
transitive}.
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Cubical sets and Topological realisations




A cubical set
A k-graph has cubes: Q;(A) ={A:d(\) <1, |\ =1}




A cubical set
A k-graph has cubes: Q;(A) = {\:d(\) <1,|\ =1}. Cubes
have faces: if d(\) = e, +---+ €, i; < ij4+1, then for j </,

A=eF/(\) = F(\Nf e el




A cubical set
A k-graph has cubes: Q;(A) = {\:d(\) <1,|A| =1}. Cubes
have faces: if d(\) = e, +---+ €, i; < ij4+1, then for j </,

A=eF/(\) = F(\Nf e el

Paste [0, 1] into every /-cube.




A cubical set
A k-graph has cubes: Q;(A) = {\:d(\) <1,|A| =1}. Cubes
have faces: if d(\) = e, +---+ €, i; < ij4+1, then for j </,

A=eF/(\) = F(\Nf e el

Paste [0, 1] into every /-cube. Glue along faces.




A cubical set
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have faces: if d(\) = e, +---+ €, i; < ij4+1, then for j </,
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topological realisation Xp of A. (Also of the cubical set
associated to A.)




A cubical set
A k-graph has cubes: Q;(A) = {\:d(\) <1,|A| =1}. Cubes
have faces: if d(\) = e, +---+ €, i; < ij4+1, then for j </,

A=eF/(\) = F(\Nf e el

Paste [0, 1]" into every /-cube. Glue along faces. This is the
topological realisation Xp of A. (Also of the cubical set
associated to A.)

For example,




Topology and k-graphs

Theorem (Kaliszewski—Kumjian—Quigg—S). The map
A — X is functorial from k-graphs to spaces.




Topology and k-graphs
Theorem (Kaliszewski—Kumjian—Quigg—S). The map
A — X is functorial from k-graphs to spaces.

k-graphs have coverings (p : A — I morphism, p injective on
each vA and Av), fundamental groups, homology.




Topology and k-graphs

Theorem (Kaliszewski—Kumjian—Quigg—S). The map
A — X is functorial from k-graphs to spaces.

k-graphs have coverings (p : A — I morphism, p injective on
each vA and Av), fundamental groups, homology.

Theorem (KKQS). For fixed A get category equivalence

between algebraic coverings of A and topological coverings of
Xh.




Topology and k-graphs

Theorem (Kaliszewski—Kumjian—Quigg—S). The map
A — X is functorial from k-graphs to spaces.

k-graphs have coverings (p : A — I morphism, p injective on
each vA and Av), fundamental groups, homology.

Theorem (KKQS). For fixed A get category equivalence
between algebraic coverings of A and topological coverings of

XA
Theorem (KKQS, Kumjian—Pask—S). The algebraic

fundamental group and homology of a k-graph are canonically
isomorphic to those of its topologcal realisation.
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A — X is functorial from k-graphs to spaces.

k-graphs have coverings (p : A — I morphism, p injective on
each vA and Av), fundamental groups, homology.

Theorem (KKQS). For fixed A get category equivalence

between algebraic coverings of A and topological coverings of
Xh.

Theorem (KKQS, Kumjian—Pask-S). The algebraic
fundamental group and homology of a k-graph are canonically
isomorphic to those of its topologcal realisation.

Examples: Xpor = Xy x Xr.




Topology and k-graphs

Theorem (Kaliszewski—Kumjian—Quigg—S). The map
A — X is functorial from k-graphs to spaces.

k-graphs have coverings (p : A — I morphism, p injective on
each vA and Av), fundamental groups, homology.

Theorem (KKQS). For fixed A get category equivalence

between algebraic coverings of A and topological coverings of
Xh.

Theorem (KKQS, Kumjian—Pask-S). The algebraic
fundamental group and homology of a k-graph are canonically
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Topology and k-graphs

Theorem (Kaliszewski—Kumjian—Quigg—S). The map
A — X is functorial from k-graphs to spaces.

k-graphs have coverings (p : A — I morphism, p injective on
each vA and Av), fundamental groups, homology.

Theorem (KKQS). For fixed A get category equivalence
between algebraic coverings of A and topological coverings of
Xh.

Theorem (KKQS, Kumjian—Pask—S). The algebraic

fundamental group and homology of a k-graph are canonically
isomorphic to those of its topologcal realisation.

Examples: Xaxr = Xp X Xr. Xpaxz = mapping torus.
Skew-products give coverings; Skew product by fundamental
group gives universal cover.
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Cuntz—Krieger family, induction gives sys\ = ps() and

py = ZAevE" s\Sy. Automatically have s;s, = s, when pu, v
composable.
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The Cuntz—Krieger relations

If E is a row-finite directed graph, and {s.,p,} a
Cuntz—Krieger family, induction gives sys\ = ps() and

py = ZAevE" s\Sy. Automatically have s;s, = s, when pu, v
composable.

Definition. Let A be a row-finite k-graph with no sources. A
Cuntz—Krieger N-family is a collection {sy : A\ € A} of partial
isometries such that:

(CK1) {s, : v € A%} is a set of mutually orthogonal projections;
(CK2) s,s, = s,, whenever s(u) = r(v);

(CK3) sis, = sg(u) forall € A; and

(CK4) s, = > conn tath forall v e A% and n € N*.

Define C*(A) as the universal C*-algebra generated by a
Cuntz—Krieger family.
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iff A is aperiodic and cofinal (Vv € A% x € A*°, have
vAx(n) # ) for large n).
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Structure of C*(A\)

Theorem (Kumjian—Pask, Robertson—S). C*(A) is simple
iff A is aperiodic and cofinal (Vv € A% x € A*°, have

vAx(n) # ) for large n).

Examples: (Kumjian—Pask): C*(A x ') = C*(\) @ C*(I');
(Kumjian—Pask): If f : N/ — N surjective,

C*(f*N) = C*(N) @ C*(ker(1));

(Kumjian—Pask, Pask-Quigg—Raeburn): ¢ : A — G (abelian)
gives action G on C*(A), and C*(A x. G) = C*(A) x G.
(Farthing—Pask-S): Given Z' ~ A, we have

C*(AxZ" = C*(N) x Z'.
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Example: No dichotomy
0 T go S
G

\8 101

7. acts on blue graph E by addition with carry. A = E* x Z.
On vA®™ this is the odometer. So C*(A) ~ Bunce-Deddens. &




	k-graphs and coloured graphs
	Constructions
	Dynamics and aperiodicity
	Cubical sets and Topological realisations
	C*-algebras

