What is a *k*-graph?

Aidan Sims

ICMS Edinburgh 15 July 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The plan

k-graphs and coloured graphs

Constructions

Dynamics and aperiodicity

Cubical sets and Topological realisations

C*-algebras

Section 1: *k*-graphs and coloured graphs

k-graphs and coloured graphs

Constructions

Dynamics and aperiodicity

Cubical sets and Topological realisations

C*-algebras

э

・ロト ・ 理ト ・ ヨト ・ ヨト

Definition

Definition

Let $k \in \mathbb{N} = \{0, 1, 2, ...\}$. A graph of rank k or a k-graph is a countable category Λ equipped with a functor $d : \Lambda \to \mathbb{N}^k$, called the *degree functor* satisfying the following factorisation property:

for all $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ such that $d(\lambda) = m + n$ there are unique elements $\mu \in d^{-1}(m)$ and $\nu \in d^{-1}(n)$ such that $\lambda = \mu \nu$.

Examples

•
$$E = (E^0, E^1, r, s)$$
 a directd graph. Recall
 $E^* = \{\text{finite paths}\}$ — a category under concatenation.
Put $d(e_1e_2\cdots e_n) = n$. If $d(e_1\cdots e_p) = m + n$, so
 $p = m + n$, have unique factorisation
 $(e_1 \dots e_m)(e_{m+1} \cdots e_p)$. So (E^*, d) is a 1-graph.

Examples

Examples

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

UNIVERSITY OF WOLLONGONG AUSTRALIA

æ

・ロン ・雪 と ・ 田 と ・ 田 と

UNIVERSITY OF WOLLONGONG AUSTRALIA

d((0,0),(2,1)) = (1,0) + (1,1)

d((0,0),(2,1)) = (1,0) + (1,1) = (2,0) + (0,1)

d((0,1),(1,2)) = (1,0) + (0,1)

d((0,1),(1,2)) = (1,0) + (0,1) = (0,1) + (1,0)

Notation

► If $\lambda = \lambda' \lambda'' \lambda'''$ with $d(\lambda') = m$ and $d(\lambda'') = d(\lambda) - n$, define $\lambda(m, n) := \lambda''$.

Definition (Again)

Let $k \in \mathbb{N} = \{0, 1, 2, ...\}$. A graph of rank k or a k-graph is a countable category Λ equipped with a functor $d : \Lambda \to \mathbb{N}^k$, called the *degree functor* satisfying the following factorisation property:

for all $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ such that $d(\lambda) = m + n$ there are unique elements $\mu \in d^{-1}(m)$ and $\nu \in d^{-1}(n)$ such that $\lambda = \mu \nu$.

イロト 不得 トイヨト イヨト

Definition (Again)

Let $k \in \mathbb{N} = \{0, 1, 2, ...\}$. A graph of rank k or a k-graph is a countable category Λ equipped with a functor $d : \Lambda \to \mathbb{N}^k$, called the *degree functor* satisfying the following factorisation property:

for all $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ such that $d(\lambda) = m + n$ there are unique elements $\mu \in d^{-1}(m)$ and $\nu \in d^{-1}(n)$ such that $\lambda = \mu \nu$.

Lemma. $\Lambda^0 = {id_v : v \in Obj(\Lambda)}.$

Definition (Again)

Let $k \in \mathbb{N} = \{0, 1, 2, ...\}$. A graph of rank k or a k-graph is a countable category Λ equipped with a functor $d : \Lambda \to \mathbb{N}^k$, called the *degree functor* satisfying the following factorisation property:

for all $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ such that $d(\lambda) = m + n$ there are unique elements $\mu \in d^{-1}(m)$ and $\nu \in d^{-1}(n)$ such that $\lambda = \mu \nu$.

Lemma. $\Lambda^0 = {id_v : v \in Obj(\Lambda)}.$ **Lemma.** $\Lambda^m {}_{s*r} \Lambda^n \cong \Lambda^{m+n}.$

Definition (Again)

Let $k \in \mathbb{N} = \{0, 1, 2, ...\}$. A graph of rank k or a k-graph is a countable category Λ equipped with a functor $d : \Lambda \to \mathbb{N}^k$, called the *degree functor* satisfying the following factorisation property:

for all $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ such that $d(\lambda) = m + n$ there are unique elements $\mu \in d^{-1}(m)$ and $\nu \in d^{-1}(n)$ such that $\lambda = \mu \nu$.

Lemma. $\Lambda^0 = \{ id_v : v \in Obj(\Lambda) \}.$ Lemma. $\Lambda^m {}_{s}*_r \Lambda^n \cong \Lambda^{m+n}.$ Cor. $\Lambda^{e_i} {}_{s}*_r \Lambda^{e_j} \cong \Lambda^{e_j} {}_{s}*_r \Lambda^{e_i}.$

イロト イボト イヨト イヨト 三日

Two-coloured graphs

Prop (Kumjian–Pask). Given graphs E_1 , E_2 with common vertex set $E_1^0 = E_2^0$, and given an isomorphism

$$\theta_{12}: E_1 {}_{s}*_r E_2 \cong E_2 {}_{s}*_r E_1,$$

there is a unique 2-graph with $\Lambda^0 = E_1^0 = E_2^0$, $\Lambda^{e_i} = E_i^1$, and with ef = f'e' whenever $\theta_{12}(e, f) = (f', e')$.

イロト イボト イヨト イヨト 三日

Two-coloured graphs

Prop (Kumjian–Pask). Given graphs E_1 , E_2 with common vertex set $E_1^0 = E_2^0$, and given an isomorphism

$$\theta_{12}: E_{1\ s} *_{r} E_{2} \cong E_{2\ s} *_{r} E_{1},$$

there is a unique 2-graph with $\Lambda^0 = E_1^0 = E_2^0$, $\Lambda^{e_i} = E_i^1$, and with ef = f'e' whenever $\theta_{12}(e, f) = (f', e')$.

Idea of proof: take path category of $(E_1^0, E_1^1 \cup E_2^1, r, s)$. Quotient by $\alpha ef \beta \sim \alpha f' e' \beta$ whenever $\theta_{12}(e, f) = (f', e')$.

イロト イボト イヨト イヨト 三日

Given $fgh \in \Lambda$ with $f \in \Lambda^{e_i}$, $g \in \Lambda^{e_j}$ and $h \in \Lambda^{e_l}$, factorisation gives:

◆□ > ◆□ > ◆豆 > ◆豆 > □ 豆 □

Given $fgh \in \Lambda$ with $f \in \Lambda^{e_i}$, $g \in \Lambda^{e_j}$ and $h \in \Lambda^{e_l}$, factorisation gives:

$$fgh = g_1f_1h = g_1h_1f_2 = h_2g_2f_2$$

◆□ > ◆□ > ◆豆 > ◆豆 > □ 豆 □

Given $fgh \in \Lambda$ with $f \in \Lambda^{e_i}$, $g \in \Lambda^{e_j}$ and $h \in \Lambda^{e_l}$, factorisation gives:

$$fgh = g_1f_1h = g_1h_1f_2 = h_2g_2f_2$$

<ロト <回ト < 注ト < 注ト

Given $fgh \in \Lambda$ with $f \in \Lambda^{e_i}$, $g \in \Lambda^{e_j}$ and $h \in \Lambda^{e_l}$, factorisation gives:

$$fgh = g_1 f_1 h = g_1 h_1 f_2 = h_2 g_2 f_2$$

= $fh^1 g^1 = h^2 f^1 g^1 = h^2 g^2 f^2$

<ロト <回ト < 注ト < 注ト

Given $fgh \in \Lambda$ with $f \in \Lambda^{e_i}$, $g \in \Lambda^{e_j}$ and $h \in \Lambda^{e_l}$, factorisation gives:

$$fgh = g_1 f_1 h = g_1 h_1 f_2 = h_2 g_2 f_2$$

= $fh^1 g^1 = h^2 f^1 g^1 = h^2 g^2 f^2$

<ロト <回ト < 注ト < 注ト

Given $fgh \in \Lambda$ with $f \in \Lambda^{e_i}$, $g \in \Lambda^{e_j}$ and $h \in \Lambda^{e_l}$, factorisation gives:

$$fgh = g_1 f_1 h = g_1 h_1 f_2 = h_2 g_2 f_2$$

= $fh^1 g^1 = h^2 f^1 g^1 = h^2 g^2 f^2$

Associativity in Λ says $f_2 = f^2, g_2 = g^2, h_2 = h^2$.

(日)

An example

Is this associativity automatic whenever we have isomorphisms $E_i * E_j \cong E_j * E_i$ for $i \le i, j \le k$?

æ

ヘロト 人間ト 人目ト 人目下

An example

Is this associativity automatic whenever we have isomorphisms $E_i * E_j \cong E_j * E_i$ for $i \le i, j \le k$? No. Example due to Spielberg:

Coloures graphs and squares

Okay, what if we require θ_{ij} satisfying the right sort of associativity

◆□ > ◆□ > ◆□ > ◆□ > ● □

Coloures graphs and squares

Okay, what if we require θ_{ij} satisfying the right sort of associativity

Definition

A complete and associative collection of squares for a E_1, \ldots, E_k is a collection of isomorphisms $\theta_{ij} : E_i \,_{s} *_r E_j \cong E_j \,_{s} *_r E_i$ such that $\theta_{ji} = \theta_{ij}^{-1}$ and if we write ef = f'e' when $\theta_{ij}(e, f) = (f', e')$, then if fgh is a tri-coloured path and

$$egin{aligned} & \textit{fg} \sim g_1 f_1, \quad f_1 h \sim h_1 f_2, \quad g_1 h_1 \sim h_2 g_2, \ & \textit{gh} \sim h^1 g^1, \quad \textit{fh}^1 \sim h^2 f^1 \quad \text{and} \quad f^1 g^1 \sim g^2 f^2, \end{aligned}$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

then $f_2 = f^2$, $g_2 = g^2$ and $h_2 = h^2$.

Coloures graphs and squares

Okay, what if we require θ_{ij} satisfying the right sort of associativity

Definition

A complete and associative collection of squares for a E_1, \ldots, E_k is a collection of isomorphisms $\theta_{ij} : E_i \underset{s}{*}_r E_j \cong E_j \underset{s}{*}_r E_i$ such that $\theta_{ji} = \theta_{ij}^{-1}$ and if we write ef = f'e' when $\theta_{ij}(e, f) = (f', e')$, then if fgh is a tri-coloured path and

$$\begin{array}{ll} fg\sim g_1f_1, \quad f_1h\sim h_1f_2, \quad g_1h_1\sim h_2g_2,\\ gh\sim h^1g^1, \quad fh^1\sim h^2f^1 \quad \text{and} \quad f^1g^1\sim g^2f^2, \end{array}$$

then $f_2 = f^2$, $g_2 = g^2$ and $h_2 = h^2$.

Theorem (Fowler–S, Hazelwood–Raeburn–S–Webster) Every complete and associative collection of squares determines a *k*-graph and conversely.

Idea of proof

Inductively show that every path determines an entire commuting diagram.

Idea of proof

Inductively show that every path determines an entire commuting diagram.

Section 2: Constructions

k-graphs and coloured graphs

Constructions

Dynamics and aperiodicity

Cubical sets and Topological realisations

C*-algebras

3

ヘロト 人間ト 人間ト 人間ト

Cartesian products, pullbacks

 (Λ, d) a k-graph and (Λ', d') a k'-graph.

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Cartesian products, pullbacks

 (Λ, d) a k-graph and (Λ', d') a k'-graph. Take $\Lambda \times \Lambda'$. Coordinatewise operations, and $d_P(\lambda, \lambda') = (d(\lambda), d'(\lambda'))$. This is a (k + k')-graph. The *Cartesian-product* (k + k')-graph.

Cartesian products, pullbacks

 (Λ, d) a k-graph and (Λ', d') a k'-graph. Take $\Lambda \times \Lambda'$. Coordinatewise operations, and $d_P(\lambda, \lambda') = (d(\lambda), d'(\lambda'))$. This is a (k + k')-graph. The *Cartesian-product* (k + k')-graph.

 (Λ, d) a k-graph, $f : \mathbb{N}^{l} \to \mathbb{N}^{d}$ a semigroup homomorphism.

Cartesian products, pullbacks

 (Λ, d) a k-graph and (Λ', d') a k'-graph. Take $\Lambda \times \Lambda'$. Coordinatewise operations, and $d_P(\lambda, \lambda') = (d(\lambda), d'(\lambda'))$. This is a (k + k')-graph. The *Cartesian-product* (k + k')-graph.

 (Λ, d) a k-graph, $f : \mathbb{N}^{l} \to \mathbb{N}^{d}$ a semigroup homomorphism. Put $f^*\Lambda = \{(\lambda, m) \in \Lambda \times \mathbb{N}^{l} : f(m) = d(\lambda)\}$, with $d(\lambda, m) = m$, pointwise operations. This is an *l*-graph: the *pullback l*-graph.

イロト 不得 トイヨト イヨト

A a k-graph, G a discrete group, $c : \Lambda \rightarrow G$ multiplicative.

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

A a k-graph, G a discrete group, $c : \Lambda \to G$ multiplicative. Put $(\Lambda \times_c G) = \Lambda \times c$ with $r(\lambda, g) = (r(\lambda), g)$, $s(\lambda, g) = (s(\lambda), gc(\lambda))$. Put $(\lambda, g)(\mu, gc(\lambda)) = (\lambda \mu, g)$, and $d(\lambda, g) = d(\lambda)$. This is a k-graph: the skew-product k-graph.

A a k-graph, G a discrete group, $c : \Lambda \to G$ multiplicative. Put $(\Lambda \times_c G) = \Lambda \times c$ with $r(\lambda, g) = (r(\lambda), g)$, $s(\lambda, g) = (s(\lambda), gc(\lambda))$. Put $(\lambda, g)(\mu, gc(\lambda)) = (\lambda \mu, g)$, and $d(\lambda, g) = d(\lambda)$. This is a k-graph: the skew-product k-graph. A a k-graph, \mathbb{Z}^l acting on Λ by automorphisms.

A a k-graph, G a discrete group, $c : \Lambda \to G$ multiplicative. Put $(\Lambda \times_c G) = \Lambda \times c$ with $r(\lambda, g) = (r(\lambda), g)$, $s(\lambda, g) = (s(\lambda), gc(\lambda))$. Put $(\lambda, g)(\mu, gc(\lambda)) = (\lambda \mu, g)$, and $d(\lambda, g) = d(\lambda)$. This is a k-graph: the skew-product k-graph. A a k-graph, \mathbb{Z}^l acting on A by automorphisms. Put $\Lambda \rtimes \mathbb{Z}^l = \Lambda \times \mathbb{Z}$ with $r(\lambda, n) = r(\lambda)$, $s(\lambda, n) = \alpha_{-n}(s(\lambda))$. Put $(\lambda, m)(\mu, n) = (\lambda \alpha_m(\mu), m + n)$. This is a (k + l)-graph: the crossed-product k + l-graph.

> UNIVERSITY OF WOLLONGONG AUSTRALIA

イロト イボト イヨト イヨト 三日

Section 3: Dynamics and aperiodicity

k-graphs and coloured graphs

Constructions

Dynamics and aperiodicity

Cubical sets and Topological realisations

C*-algebras

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

We assume from now on that Λ is *row-finite* (each $v\Lambda^n$ is finite) and has no sources (each $v\Lambda^n$ is nonempty).

◆□ > ◆□ > ◆□ > ◆□ > ● □

We assume from now on that Λ is *row-finite* (each $v\Lambda^n$ is finite) and has no sources (each $v\Lambda^n$ is nonempty).

An *infinite path* is a degree-preserving morphism $x : \Omega_k \to \Lambda$:

イロト イヨト イヨト

We assume from now on that Λ is *row-finite* (each $v\Lambda^n$ is finite) and has no sources (each $v\Lambda^n$ is nonempty).

An *infinite path* is a degree-preserving morphism $x : \Omega_k \to \Lambda$:

イロト イ押ト イヨト イヨト

We assume from now on that Λ is *row-finite* (each $v\Lambda^n$ is finite) and has no sources (each $v\Lambda^n$ is nonempty).

An *infinite path* is a degree-preserving morphism $x : \Omega_k \to \Lambda$:

Then $\Lambda^{\infty} = \{ \text{infinite paths} \}$ is a locally compact Hausdorff totally disconnected space with topology generated by $Z(\lambda) = \{ x : x(0, d(\lambda)) = \lambda \}.$

イロト イ押ト イヨト イヨト

The semigroup \mathbb{N}^k acts by local homeomorphisms of Λ^∞ :

$$\sigma^{p}(x)(m,n) = x(m+p,n+p).$$

The semigroup \mathbb{N}^k acts by local homeomorphisms of Λ^{∞} :

$$\sigma^{p}(x)(m,n) = x(m+p,n+p).$$

Note $\sigma^p : Z(\lambda) \xrightarrow{\cong} Z(\lambda(0, d(\lambda)))$ if $d(\lambda) \ge p$.

The semigroup \mathbb{N}^k acts by local homeomorphisms of Λ^{∞} :

$$\sigma^{p}(x)(m,n) = x(m+p,n+p).$$

Note $\sigma^{p} : Z(\lambda) \xrightarrow{\cong} Z(\lambda(0, d(\lambda)))$ if $d(\lambda) \ge p$. (Λ^{∞}, σ) is the higher-rank shift of Λ .

The semigroup \mathbb{N}^k acts by local homeomorphisms of Λ^{∞} :

$$\sigma^p(x)(m,n) = x(m+p,n+p).$$

Note $\sigma^p : Z(\lambda) \xrightarrow{\cong} Z(\lambda(0, d(\lambda)))$ if $d(\lambda) > p$.

 $(\Lambda^{\infty}, \sigma)$ is the higher-rank shift of Λ .

Say Λ is *aperiodic* if its shift is topologically free: for a dense set of x, $\sigma^m(x) = \sigma^n(x)$ implies m = n.

э

The semigroup \mathbb{N}^k acts by local homeomorphisms of Λ^∞ :

$$\sigma^{p}(x)(m,n) = x(m+p,n+p).$$

Note $\sigma^p : Z(\lambda) \xrightarrow{\cong} Z(\lambda(0, d(\lambda)))$ if $d(\lambda) \ge p$.

 $(\Lambda^{\infty}, \sigma)$ is the higher-rank shift of Λ .

Say Λ is *aperiodic* if its shift is topologically free: for a dense set of x, $\sigma^m(x) = \sigma^n(x)$ implies m = n.

Examples: 1-graph aperiodic iff every cycle has an entry.

The semigroup \mathbb{N}^k acts by local homeomorphisms of Λ^∞ :

$$\sigma^{p}(x)(m,n) = x(m+p,n+p).$$

Note $\sigma^p : Z(\lambda) \xrightarrow{\cong} Z(\lambda(0, d(\lambda)))$ if $d(\lambda) \ge p$.

 $(\Lambda^{\infty}, \sigma)$ is the higher-rank shift of Λ .

Say Λ is *aperiodic* if its shift is topologically free: for a dense set of x, $\sigma^m(x) = \sigma^n(x)$ implies m = n.

Examples: 1-graph aperiodic iff every cycle has an entry. $\Lambda\times\Gamma$ aperiodic iff Λ,Γ aperiodic

The semigroup \mathbb{N}^k acts by local homeomorphisms of Λ^∞ :

$$\sigma^{p}(x)(m,n) = x(m+p,n+p).$$

Note $\sigma^p : Z(\lambda) \xrightarrow{\cong} Z(\lambda(0, d(\lambda)))$ if $d(\lambda) \ge p$.

 $(\Lambda^{\infty}, \sigma)$ is the higher-rank shift of Λ .

Say Λ is *aperiodic* if its shift is topologically free: for a dense set of x, $\sigma^m(x) = \sigma^n(x)$ implies m = n.

Examples: 1-graph aperiodic iff every cycle has an entry. $\Lambda \times \Gamma$ aperiodic iff Λ, Γ aperiodic $f^*\Lambda$ rarely aperiodic: f(m) = f(n) forces $\sigma^m(x) = \sigma^n(x)$ for all $x \in (f^*\Lambda)^{\infty}$.

The semigroup \mathbb{N}^k acts by local homeomorphisms of Λ^∞ :

$$\sigma^p(x)(m,n) = x(m+p,n+p).$$

Note $\sigma^p : Z(\lambda) \xrightarrow{\cong} Z(\lambda(0, d(\lambda)))$ if $d(\lambda) \ge p$.

 $(\Lambda^{\infty}, \sigma)$ is the higher-rank shift of Λ .

Say Λ is *aperiodic* if its shift is topologically free: for a dense set of x, $\sigma^m(x) = \sigma^n(x)$ implies m = n.

Examples: 1-graph aperiodic iff every cycle has an entry. $\Lambda \times \Gamma$ aperiodic iff Λ, Γ aperiodic $f^*\Lambda$ rarely aperiodic: f(m) = f(n) forces $\sigma^m(x) = \sigma^n(x)$ for all $x \in (f^*\Lambda)^{\infty}$. $\Lambda \times_d \mathbb{Z}^k$ is always aperiodic.

イロト イボト イヨト イヨト 三日

The semigroup \mathbb{N}^k acts by local homeomorphisms of Λ^∞ :

$$\sigma^p(x)(m,n) = x(m+p,n+p).$$

Note $\sigma^p : Z(\lambda) \xrightarrow{\cong} Z(\lambda(0, d(\lambda)))$ if $d(\lambda) \ge p$.

 $(\Lambda^{\infty}, \sigma)$ is the higher-rank shift of Λ .

Say Λ is *aperiodic* if its shift is topologically free: for a dense set of x, $\sigma^m(x) = \sigma^n(x)$ implies m = n.

Examples: 1-graph aperiodic iff every cycle has an entry. $\Lambda \times \Gamma$ aperiodic iff Λ, Γ aperiodic $f^*\Lambda$ rarely aperiodic: f(m) = f(n) forces $\sigma^m(x) = \sigma^n(x)$ for all $x \in (f^*\Lambda)^{\infty}$. $\Lambda \times_d \mathbb{Z}^k$ is always aperiodic. $\Lambda \rtimes \mathbb{Z}^l$ aperiodic if { Λ aperiodic and $\mathbb{Z}^l \frown \Lambda^{\infty}$ free + transitive}.

 $(\{0,1\}$ -labellings of "sock" with labels adding to 0.)

ヘロト ヘ回ト ヘヨト ヘヨト

 $(\{0,1\}$ -labellings of "sock" with labels adding to 0.)

$$\Lambda^{(1,0)}: \begin{array}{c|c} \overline{z} & \overline{v} \\ \hline x & \overline{y} \\ \hline \end{array} \qquad \Lambda^{(0,1)}: \begin{array}{c|c} \overline{z} & \overline{u} \\ \hline x & \overline{y} \\ \hline \end{array}$$

★ロト★御と★注と★注と、注

 $(\{0,1\}\)$ -labellings of "sock" with labels adding to 0.)

$$\Lambda^{(1,0)}: \begin{array}{c|c} \overline{z} & \overline{v} \\ \hline x & \overline{y} \\ \hline u \\ \hline \end{array} \qquad \Lambda^{(0,1)}: \begin{array}{c|c} \overline{z} & \overline{u} \\ \hline x & \overline{y} \\ \hline \end{array}$$

<ロト <回ト < 注ト < 注ト

 $(\{0,1\}$ -labellings of "sock" with labels adding to 0.)

$$\Lambda^{(1,0)}: \begin{array}{c|c} \overline{z} & \overline{v} \\ \hline x & \overline{y} \\ \hline u \\ \hline \end{array} \qquad \Lambda^{(0,1)}: \begin{array}{c|c} \overline{z} & \overline{u} \\ \hline x & \overline{y} \\ \hline \end{array}$$

<ロト <回ト < 注ト < 注ト

($\{0,1\}$ -labellings of "sock" with labels adding to 0.)

$$\Lambda^{(1,0)}: \begin{array}{c|c} \overline{z} & \overline{v} \\ \hline x & \overline{y} \\ \hline u \\ \hline \end{array} \qquad \Lambda^{(0,1)}: \begin{array}{c|c} \overline{z} & \overline{u} \\ \hline x & \overline{y} \\ \hline \end{array}$$

- -

Factorisations:

<ロト <回ト < 注ト < 注ト

Section 4: Cubical sets and Topological realisations

k-graphs and coloured graphs

Constructions

Dynamics and aperiodicity

Cubical sets and Topological realisations

C*-algebras

A D > A P > A B > A B >

A *k*-graph has cubes: $Q_l(\Lambda) = \{\lambda : d(\lambda) \leq \mathbf{1}, |\lambda| = l\}.$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

A *k*-graph has cubes: $Q_{I}(\Lambda) = \{\lambda : d(\lambda) \leq \mathbf{1}, |\lambda| = I\}$. Cubes have faces: if $d(\lambda) = e_{i_{1}} + \dots + e_{i_{l}}, i_{j} < i_{j+1}$, then for $j \leq I$, $\lambda = eF_{1}^{j}(\lambda) = F_{0}^{j}(\lambda)f \quad e, f \in \Lambda^{e_{i_{j}}}.$

A k-graph has cubes: $Q_{I}(\Lambda) = \{\lambda : d(\lambda) \leq \mathbf{1}, |\lambda| = I\}$. Cubes have faces: if $d(\lambda) = e_{i_{1}} + \cdots + e_{i_{l}}, i_{j} < i_{j+1}$, then for $j \leq I$, $\lambda = eF_{1}^{j}(\lambda) = F_{0}^{j}(\lambda)f \quad e, f \in \Lambda^{e_{i_{j}}}.$

Paste $[0, 1]^{l}$ into every *l*-cube.

A k-graph has cubes: $Q_{I}(\Lambda) = \{\lambda : d(\lambda) \leq \mathbf{1}, |\lambda| = I\}$. Cubes have faces: if $d(\lambda) = e_{i_{1}} + \dots + e_{i_{l}}, i_{j} < i_{j+1}$, then for $j \leq I$, $\lambda = eF_{1}^{j}(\lambda) = F_{0}^{j}(\lambda)f \quad e, f \in \Lambda^{e_{i_{j}}}.$

Paste $[0,1]^{l}$ into every *l*-cube. Glue along faces.

A k-graph has cubes: $Q_{I}(\Lambda) = \{\lambda : d(\lambda) \leq \mathbf{1}, |\lambda| = I\}$. Cubes have faces: if $d(\lambda) = e_{i_{1}} + \dots + e_{i_{l}}, i_{j} < i_{j+1}$, then for $j \leq I$, $\lambda = eF_{1}^{j}(\lambda) = F_{0}^{j}(\lambda)f \quad e, f \in \Lambda^{e_{i_{j}}}.$

Paste $[0, 1]^{l}$ into every *l*-cube. Glue along faces. This is the *topological realisation* X_{Λ} of Λ . (Also of the cubical set associated to Λ .)

A k-graph has cubes: $Q_{I}(\Lambda) = \{\lambda : d(\lambda) \leq \mathbf{1}, |\lambda| = I\}$. Cubes have faces: if $d(\lambda) = e_{i_{1}} + \dots + e_{i_{l}}, i_{j} < i_{j+1}$, then for $j \leq I$, $\lambda = eF_{1}^{j}(\lambda) = F_{0}^{j}(\lambda)f \quad e, f \in \Lambda^{e_{i_{j}}}.$

Paste $[0, 1]^{l}$ into every *l*-cube. Glue along faces. This is the *topological realisation* X_{Λ} of Λ . (Also of the cubical set associated to Λ .) For example,

Theorem (Kaliszewski-Kumjian-Quigg-S). The map

 $\Lambda \mapsto X_{\Lambda}$ is functorial from *k*-graphs to spaces.

Theorem (Kaliszewski–Kumjian–Quigg–S). The map $\Lambda \mapsto X_{\Lambda}$ is functorial from *k*-graphs to spaces.

k-graphs have coverings $(p : \Lambda \rightarrow \Gamma \text{ morphism}, p \text{ injective on each } v\Lambda \text{ and } \Lambda v)$, fundamental groups, homology.

イロト イボト イヨト イヨト 三日

Theorem (Kaliszewski–Kumjian–Quigg–S). The map $\Lambda \mapsto X_{\Lambda}$ is functorial from *k*-graphs to spaces.

k-graphs have coverings $(p : \Lambda \to \Gamma \text{ morphism}, p \text{ injective on each } v\Lambda \text{ and } \Lambda v)$, fundamental groups, homology.

Theorem (KKQS). For fixed Λ get category equivalence between algebraic coverings of Λ and topological coverings of X_{Λ} .

Theorem (Kaliszewski–Kumjian–Quigg–S). The map $\Lambda \mapsto X_{\Lambda}$ is functorial from *k*-graphs to spaces.

k-graphs have coverings $(p : \Lambda \rightarrow \Gamma \text{ morphism}, p \text{ injective on each } v\Lambda \text{ and } \Lambda v)$, fundamental groups, homology.

Theorem (KKQS). For fixed Λ get category equivalence between algebraic coverings of Λ and topological coverings of X_{Λ} .

Theorem (KKQS, Kumjian–Pask–S). The algebraic fundamental group and homology of a *k*-graph are canonically isomorphic to those of its topologcal realisation.

イロト イボト イヨト イヨト 三日

Theorem (Kaliszewski–Kumjian–Quigg–S). The map $\Lambda \mapsto X_{\Lambda}$ is functorial from *k*-graphs to spaces.

k-graphs have coverings $(p : \Lambda \rightarrow \Gamma \text{ morphism}, p \text{ injective on each } v\Lambda \text{ and } \Lambda v)$, fundamental groups, homology.

Theorem (KKQS). For fixed Λ get category equivalence between algebraic coverings of Λ and topological coverings of X_{Λ} .

Theorem (KKQS, Kumjian–Pask–S). The algebraic fundamental group and homology of a *k*-graph are canonically isomorphic to those of its topologcal realisation.

Examples: $X_{\Lambda \times \Gamma} \cong X_{\Lambda} \times X_{\Gamma}$.

(日) (四) (日) (日) (日)
Topology and *k*-graphs

Theorem (Kaliszewski–Kumjian–Quigg–S). The map $\Lambda \mapsto X_{\Lambda}$ is functorial from *k*-graphs to spaces.

k-graphs have coverings $(p : \Lambda \rightarrow \Gamma \text{ morphism}, p \text{ injective on each } v\Lambda \text{ and } \Lambda v)$, fundamental groups, homology.

Theorem (KKQS). For fixed Λ get category equivalence between algebraic coverings of Λ and topological coverings of X_{Λ} .

Theorem (KKQS, Kumjian–Pask–S). The algebraic fundamental group and homology of a *k*-graph are canonically isomorphic to those of its topologcal realisation.

Examples: $X_{\Lambda \times \Gamma} \cong X_{\Lambda} \times X_{\Gamma}$. $X_{\Lambda \rtimes \mathbb{Z}} \cong$ mapping torus.

Topology and *k*-graphs

Theorem (Kaliszewski–Kumjian–Quigg–S). The map $\Lambda \mapsto X_{\Lambda}$ is functorial from *k*-graphs to spaces.

k-graphs have coverings $(p : \Lambda \rightarrow \Gamma \text{ morphism}, p \text{ injective on each } v\Lambda \text{ and } \Lambda v)$, fundamental groups, homology.

Theorem (KKQS). For fixed Λ get category equivalence between algebraic coverings of Λ and topological coverings of X_{Λ} .

Theorem (KKQS, Kumjian–Pask–S). The algebraic fundamental group and homology of a *k*-graph are canonically isomorphic to those of its topologcal realisation.

Examples: $X_{\Lambda \times \Gamma} \cong X_{\Lambda} \times X_{\Gamma}$. $X_{\Lambda \rtimes \mathbb{Z}} \cong$ mapping torus. Skew-products give coverings; Skew product by fundamental group gives universal cover.

Section 5: C*-algebras

k-graphs and coloured graphs

Constructions

Dynamics and aperiodicity

Cubical sets and Topological realisations

C*-algebras

3

ヘロト 人間 ト 人 ヨト 人 ヨト

The Cuntz-Krieger relations

If *E* is a row-finite directed graph, and $\{s_e, p_v\}$ a Cuntz–Krieger family, induction gives $s_{\lambda}^* s_{\lambda} = p_{s(\lambda)}$ and $p_v = \sum_{\lambda \in vE^n} s_{\lambda} s_{\lambda}^*$. Automatically have $s_{\mu} s_{\nu} = s_{\mu\nu}$ when μ, ν composable.

イロト 不得 トイヨト イヨト

The Cuntz-Krieger relations

- If *E* is a row-finite directed graph, and $\{s_e, p_v\}$ a Cuntz–Krieger family, induction gives $s_{\lambda}^* s_{\lambda} = p_{s(\lambda)}$ and $p_v = \sum_{\lambda \in vE^n} s_{\lambda} s_{\lambda}^*$. Automatically have $s_{\mu} s_{\nu} = s_{\mu\nu}$ when μ, ν composable.
- **Definition.** Let Λ be a row-finite *k*-graph with no sources. A *Cuntz–Krieger* Λ -*family* is a collection $\{s_{\lambda} : \lambda \in \Lambda\}$ of partial isometries such that:

(CK1)
$$\{s_{\nu} : \nu \in \Lambda^{0}\}$$
 is a set of mutually orthogonal projections;
(CK2) $s_{\mu}s_{\nu} = s_{\mu\nu}$ whenever $s(\mu) = r(\nu)$;
(CK3) $s_{\mu}^{*}s_{\mu} = s_{s(\mu)}$ for all $\mu \in \Lambda$; and
(CK4) $s_{\nu} = \sum_{\lambda \in \nu \Lambda^{n}} t_{\lambda}t_{\lambda}^{*}$ for all $\nu \in \Lambda^{0}$ and $n \in \mathbb{N}^{k}$.

The Cuntz-Krieger relations

- If *E* is a row-finite directed graph, and $\{s_e, p_v\}$ a Cuntz–Krieger family, induction gives $s_{\lambda}^* s_{\lambda} = p_{s(\lambda)}$ and $p_v = \sum_{\lambda \in vE^n} s_{\lambda} s_{\lambda}^*$. Automatically have $s_{\mu} s_{\nu} = s_{\mu\nu}$ when μ, ν composable.
- **Definition.** Let Λ be a row-finite *k*-graph with no sources. A *Cuntz–Krieger* Λ -*family* is a collection $\{s_{\lambda} : \lambda \in \Lambda\}$ of partial isometries such that:

(CK1)
$$\{s_v : v \in \Lambda^0\}$$
 is a set of mutually orthogonal projections;
(CK2) $s_\mu s_\nu = s_{\mu\nu}$ whenever $s(\mu) = r(\nu)$;
(CK3) $s^*_\mu s_\mu = s_{s(\mu)}$ for all $\mu \in \Lambda$; and
(CK4) $s_\nu = \sum_{\lambda \in \nu \Lambda^n} t_\lambda t^*_\lambda$ for all $v \in \Lambda^0$ and $n \in \mathbb{N}^k$.
Define $C^*(\Lambda)$ as the universal C^* -algebra generated by a
Cuntz-Krieger family.

◆□▶ ◆檀▶ ◆国▶ ◆国▶ - 国一

Structure of $C^*(\Lambda)$

Theorem (Kumjian–Pask, Robertson–S). $C^*(\Lambda)$ is simple iff Λ is aperiodic and *cofinal* ($\forall v \in \Lambda^0, x \in \Lambda^\infty$, have $v\Lambda x(n) \neq \emptyset$ for large n).

イロト イボト イヨト イヨト 三日

Structure of $C^*(\Lambda)$

Theorem (Kumjian–Pask, Robertson–S). $C^*(\Lambda)$ is simple iff Λ is aperiodic and *cofinal* ($\forall v \in \Lambda^0, x \in \Lambda^\infty$, have $v\Lambda x(n) \neq \emptyset$ for large n).

Examples: (Kumjian–Pask): $C^*(\Lambda \times \Gamma) \cong C^*(\Lambda) \otimes C^*(\Gamma)$;

Structure of $C^*(\Lambda)$

Theorem (Kumjian–Pask, Robertson–S). $C^*(\Lambda)$ is simple iff Λ is aperiodic and *cofinal* ($\forall v \in \Lambda^0, x \in \Lambda^\infty$, have $v\Lambda x(n) \neq \emptyset$ for large n).

Examples: (Kumjian–Pask): $C^*(\Lambda \times \Gamma) \cong C^*(\Lambda) \otimes C^*(\Gamma)$;

(Kumjian–Pask): If $f : \mathbb{N}^{l} \to \mathbb{N}^{k}$ surjective, $C^{*}(f^{*}\Lambda) \cong C^{*}(\Lambda) \otimes C^{*}(\ker(f));$

イロト 不得 トイヨト イヨト 三日

Structure of $C^*(\Lambda)$

Theorem (Kumjian–Pask, Robertson–S). $C^*(\Lambda)$ is simple iff Λ is aperiodic and *cofinal* ($\forall v \in \Lambda^0, x \in \Lambda^\infty$, have $v\Lambda x(n) \neq \emptyset$ for large n).

Examples: (Kumjian–Pask): $C^*(\Lambda \times \Gamma) \cong C^*(\Lambda) \otimes C^*(\Gamma)$;

(Kumjian–Pask): If $f : \mathbb{N}^{l} \to \mathbb{N}^{k}$ surjective, $C^{*}(f^{*}\Lambda) \cong C^{*}(\Lambda) \otimes C^{*}(\ker(f));$

(Kumjian–Pask, Pask–Quigg–Raeburn): $c : \Lambda \to G$ (abelian) gives action \widehat{G} on $C^*(\Lambda)$, and $C^*(\Lambda \times_c G) \cong C^*(\Lambda) \rtimes \widehat{G}$.

Structure of $C^*(\Lambda)$

Theorem (Kumjian–Pask, Robertson–S). $C^*(\Lambda)$ is simple iff Λ is aperiodic and *cofinal* ($\forall v \in \Lambda^0, x \in \Lambda^\infty$, have $v\Lambda x(n) \neq \emptyset$ for large n).

Examples: (Kumjian–Pask): $C^*(\Lambda \times \Gamma) \cong C^*(\Lambda) \otimes C^*(\Gamma)$;

(Kumjian–Pask): If $f : \mathbb{N}^{l} \to \mathbb{N}^{k}$ surjective, $C^{*}(f^{*}\Lambda) \cong C^{*}(\Lambda) \otimes C^{*}(\ker(f));$

(Kumjian–Pask, Pask–Quigg–Raeburn): $c : \Lambda \to G$ (abelian) gives action \widehat{G} on $C^*(\Lambda)$, and $C^*(\Lambda \times_c G) \cong C^*(\Lambda) \rtimes \widehat{G}$.

(Farthing–Pask–S): Given $\mathbb{Z}^{\prime} \curvearrowright \Lambda$, we have $C^{*}(\Lambda \rtimes \mathbb{Z}^{\prime}) \cong C^{*}(\Lambda) \rtimes \mathbb{Z}^{\prime}$.

▲ロト★課 ト★注 ト★注 トー注 のの

▲ロト▲園ト▲臣ト▲臣ト 臣 の9

<ロト < 回 ト < 三 ト < 三 ト 、 三 の(</p>

Level 1 Level 2 Level 3

→ All

 \mathbb{Z} acts on blue graph *E* by addition with carry.

Level 1 Level 2 Level 3

► All

 \mathbb{Z} acts on blue graph *E* by addition with carry.

Level 1 Level 2 Level 3

→ All

 \mathbb{Z} acts on blue graph *E* by addition with carry.

Level 1 Level 2 Level 3

→ All

 \mathbb{Z} acts on blue graph *E* by addition with carry.

Level 1 Level 2 Level 3

→ All

 \mathbb{Z} acts on blue graph *E* by addition with carry.

Level 1 Level 2 Level 3

→ All

 \mathbb{Z} acts on blue graph *E* by addition with carry.

<ロト <回ト < 注ト < 注ト

Level 1 Level 2 Level 3

► All

 \mathbb{Z} acts on blue graph *E* by addition with carry.

Level 1 Level 2 Level 3

→ All

 \mathbb{Z} acts on blue graph *E* by addition with carry.

Level 1 Level 2 Level 3

→ All

 \mathbb{Z} acts on blue graph *E* by addition with carry.

Level 1 Level 2 Level 3

► All

 \mathbb{Z} acts on blue graph *E* by addition with carry.

Level 1 Level 2 Level 3

► All

 \mathbb{Z} acts on blue graph *E* by addition with carry.

<ロト <回ト < 注ト < 注ト

Level 1 Level 2 Level 3

► All

 \mathbb{Z} acts on blue graph *E* by addition with carry.

Level 1 Level 2 Level 3

► All

 \mathbb{Z} acts on blue graph *E* by addition with carry.

<ロト <回ト < 注ト < 注ト

Level 1 Level 2 Level 3

→ All

 \mathbb{Z} acts on blue graph *E* by addition with carry.

Level 1 Level 2 Level 3

→ All

 \mathbb{Z} acts on blue graph *E* by addition with carry.

<ロト <回ト < 注ト < 注ト

イロト イポト イヨト イヨト

► All

 $\mathbb Z$ acts on blue graph E by addition with carry.

► All

 \mathbb{Z} acts on blue graph E by addition with carry. $\Lambda = E^* \rtimes \mathbb{Z}$. On $v\Lambda^{\infty}$ this is the odometer. So $C^*(\Lambda) \sim$ Bunce–Deddens.

(日)