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Definition

Definition
Let k ∈ N = {0, 1, 2, . . . }. A graph of rank k or a k-graph is a
countable category Λ equipped with a functor d : Λ→ Nk ,
called the degree functor satisfying the following factorisation
property:

for all λ ∈ Λ and m, n ∈ Nk such that d(λ) =
m + n there are unique elements µ ∈ d−1(m) and
ν ∈ d−1(n) such that λ = µν.



Examples

I E = (E 0,E 1, r , s) a directd graph. Recall
E ∗ = {finite paths} — a category under concatenation.
Put d(e1e2 · · · en) = n. If d(e1 · · · ep) = m + n, so
p = m + n, have unique factorisation
(e1 . . . em)(em+1 · · · ep). So (E ∗, d) is a 1-graph.

I Nk with d = id : Nk → Nk is a k-graph.

I Define Ωk := {(m, n) ∈ Nk × Nk : m ≤ n}. Put
r(m, n) = (m,m), s(m, n) = (n, n),
(m, n)(n, p) = (m, p), and d(m, n) = n −m.
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Notation

I Λn := d−1(n).

I r(λ) := idcod(λ) ∈ Λ0 and s(λ) := iddom(λ) ∈ Λ0.

I For E ⊂ Λ and v ∈ Λ0, we write
vE := {λ ∈ E : r(λ) = v}, and
Ev := {λ ∈ E : s(λ) = v}.

I If λ = λ′λ′′λ′′′ with d(λ′) = m and d(λ′′) = d(λ)− n,
define λ(m, n) := λ′′.



Elementary facts

Definition (Again)
Let k ∈ N = {0, 1, 2, . . . }. A graph of rank k or a k-graph is a
countable category Λ equipped with a functor d : Λ→ Nk ,
called the degree functor satisfying the following factorisation
property:

for all λ ∈ Λ and m, n ∈ Nk such that d(λ) =
m + n there are unique elements µ ∈ d−1(m) and
ν ∈ d−1(n) such that λ = µν.

Lemma. Λ0 = {idv : v ∈ Obj(Λ)}.
Lemma. Λm

s∗r Λn ∼= Λm+n.

Cor. Λei
s∗r Λej ∼= Λej

s∗r Λei .
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Two-coloured graphs

Prop (Kumjian–Pask). Given graphs E1, E2 with common
vertex set E 0

1 = E 0
2 , and given an isomorphism

θ12 : E1 s∗r E2
∼= E2 s∗r E1,

there is a unique 2-graph with Λ0 = E 0
1 = E 0

2 , Λei = E 1
i , and

with ef = f ′e ′ whenever θ12(e, f ) = (f ′, e ′).

Idea of proof: take path category of (E 0
1 ,E

1
1 ∪ E 1

2 , r , s).
Quotient by αef β ∼ αf ′e ′β whenever θ12(e, f ) = (f ′, e ′).
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Associativity

Given fgh ∈ Λ with f ∈ Λei , g ∈ Λej and h ∈ Λel , factorisation
gives:

fgh = g1f1h = g1h1f2 = h2g2f2

= fh1g 1 = h2f 1g 1 = h2g 2f 2
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Associativity in Λ says f2 = f 2, g2 = g 2, h2 = h2.
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An example
Is this associativity automatic whenever we have isomorphisms
Ei ∗ Ej

∼= Ej ∗ Ei for i ≤ i , j ≤ k?

No. Example due to Spielberg:
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Coloures graphs and squares
Okay, what if we require θij satisfying the right sort of
associativity

Definition
A complete and associative collection of squares for a
E1, . . . ,Ek is a collection of isomorphisms
θij : Ei s∗r Ej

∼= Ej s∗r Ei such that θji = θ−1
ij and if we write

ef = f ′e ′ when θij(e, f ) = (f ′, e ′), then if fgh is a tri-coloured
path and

fg ∼ g1f1, f1h ∼ h1f2, g1h1 ∼ h2g2,

gh ∼ h1g 1, fh1 ∼ h2f 1 and f 1g 1 ∼ g 2f 2,

then f2 = f 2, g2 = g 2 and h2 = h2.

Theorem (Fowler–S, Hazelwood–Raeburn–S–Webster).
Every complete and associative collection of squares
determines a k-graph and conversely.
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Idea of proof
Inductively show that every path determines an entire
commuting diagram.
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Idea of proof

Inductively show that every path determines an entire
commuting diagram.
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Cartesian products, pullbacks

(Λ, d) a k-graph and (Λ′, d ′) a k ′-graph.

Take Λ× Λ′.
Coordinatewise operations, and dP(λ, λ′) = (d(λ), d ′(λ′)).
This is a (k + k ′)-graph. The Cartesian-product
(k + k ′)-graph.

(Λ, d) a k-graph, f : Nl → Nd a semigroup homomorphism.
Put f ∗Λ = {(λ,m) ∈ Λ× Nl : f (m) = d(λ)}, with
d(λ,m) = m, pointwise operations. This is an l-graph: the
pullback l-graph.
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Skew products, crossed products

Λ a k-graph, G a discrete group, c : Λ→ G multiplicative.

Put (Λ×c G ) = Λ× c with r(λ, g) = (r(λ), g),
s(λ, g) = (s(λ), gc(λ)). Put (λ, g)(µ, gc(λ)) = (λµ, g), and
d(λ, g) = d(λ). This is a k-graph: the skew-product k-graph.

Λ a k-graph, Zl acting on Λ by automorphisms. Put
Λ oZl = Λ×Z with r(λ, n) = r(λ), s(λ, n) = α−n(s(λ)). Put
(λ,m)(µ, n) = (λαm(µ),m + n). This is a (k + l)-graph: the
crossed-product k + l-graph.
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Infinite paths

We assume from now on that Λ is row-finite (each vΛn is
finite) and has no sources (each vΛn is nonempty).

An infinite path is a degree-preserving morphism x : Ωk → Λ:
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Then Λ∞ = {infinite paths} is a locally compact Hausdorff
totally disconnected space with topology generated by
Z (λ) = {x : x(0, d(λ)) = λ}.



Infinite paths

We assume from now on that Λ is row-finite (each vΛn is
finite) and has no sources (each vΛn is nonempty).

An infinite path is a degree-preserving morphism x : Ωk → Λ:

.
v

.
w

a
a′

b

c d

ac∼da′, a′c∼da, bd∼cb

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

...

...

...
..
.

..

.
..
.

..

.
..
.

..

.
..

.

v

v

v

v

w

w

w

w

v

v

v

v

w

w

w

w

v

v

v

v

w

w

w

w

c

c

c

d

d

d

c

c

c

d

d

d

c

c

c

d

d

d

b a b a′ b

b a′ b a b

b a b a′ b

b a′ b a b

Then Λ∞ = {infinite paths} is a locally compact Hausdorff
totally disconnected space with topology generated by
Z (λ) = {x : x(0, d(λ)) = λ}.



Infinite paths

We assume from now on that Λ is row-finite (each vΛn is
finite) and has no sources (each vΛn is nonempty).

An infinite path is a degree-preserving morphism x : Ωk → Λ:

.
v

.
w

a
a′

b

c d

ac∼da′, a′c∼da, bd∼cb .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

...

...

...
..
.

..

.
..
.

..

.
..
.

..

.
..

.

v

v

v

v

w

w

w

w

v

v

v

v

w

w

w

w

v

v

v

v

w

w

w

w

c

c

c

d

d

d

c

c

c

d

d

d

c

c

c

d

d

d

b a b a′ b

b a′ b a b

b a b a′ b

b a′ b a b

Then Λ∞ = {infinite paths} is a locally compact Hausdorff
totally disconnected space with topology generated by
Z (λ) = {x : x(0, d(λ)) = λ}.



Infinite paths

We assume from now on that Λ is row-finite (each vΛn is
finite) and has no sources (each vΛn is nonempty).

An infinite path is a degree-preserving morphism x : Ωk → Λ:
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Then Λ∞ = {infinite paths} is a locally compact Hausdorff
totally disconnected space with topology generated by
Z (λ) = {x : x(0, d(λ)) = λ}.



Shift maps
The semigroup Nk acts by local homeomorphisms of Λ∞:

σp(x)(m, n) = x(m + p, n + p).

Note σp : Z (λ)
∼=→ Z (λ(0, d(λ))) if d(λ) ≥ p.

(Λ∞, σ) is the higher-rank shift of Λ.

Say Λ is aperiodic if its shift is topologically free: for a dense
set of x , σm(x) = σn(x) implies m = n.

Examples: 1-graph aperiodic iff every cycle has an entry.
Λ× Γ aperiodic iff Λ, Γ aperiodic
f ∗Λ rarely aperiodic: f (m) = f (n) forces σm(x) = σn(x) for
all x ∈ (f ∗Λ)∞.
Λ×d Zk is always aperiodic.
Λ o Zl aperiodic if {Λ aperiodic and Zl y Λ∞ free +
transitive}.
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A cubical set
A k-graph has cubes: Ql(Λ) = {λ : d(λ) ≤ 1, |λ| = l}.

Cubes
have faces: if d(λ) = ei1 + · · ·+ eil , ij < ij+1, then for j ≤ l ,

λ = eF j
1(λ) = F j

0(λ)f e, f ∈ Λeij .

Paste [0, 1]l into every l-cube. Glue along faces. This is the
topological realisation XΛ of Λ. (Also of the cubical set
associated to Λ.)
For example,

uv

w

x

y

zg
h

c

d

aa

e

b

f
u
w

x
v

g

h

e

f a
b

c

d
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Topology and k-graphs

Theorem (Kaliszewski–Kumjian–Quigg–S). The map
Λ 7→ XΛ is functorial from k-graphs to spaces.

k-graphs have coverings (p : Λ→ Γ morphism, p injective on
each vΛ and Λv), fundamental groups, homology.

Theorem (KKQS). For fixed Λ get category equivalence
between algebraic coverings of Λ and topological coverings of
XΛ.

Theorem (KKQS, Kumjian–Pask–S). The algebraic
fundamental group and homology of a k-graph are canonically
isomorphic to those of its topologcal realisation.

Examples: XΛ×Γ
∼= XΛ × XΓ. XΛoZ ∼= mapping torus.

Skew-products give coverings; Skew product by fundamental
group gives universal cover.
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The Cuntz–Krieger relations

If E is a row-finite directed graph, and {se , pv} a
Cuntz–Krieger family, induction gives s∗λsλ = ps(λ) and
pv =

∑
λ∈vEn sλs

∗
λ. Automatically have sµsν = sµν when µ, ν

composable.

Definition. Let Λ be a row-finite k-graph with no sources. A
Cuntz–Krieger Λ-family is a collection {sλ : λ ∈ Λ} of partial
isometries such that:

(CK1) {sv : v ∈ Λ0} is a set of mutually orthogonal projections;

(CK2) sµsν = sµν whenever s(µ) = r(ν);

(CK3) s∗µsµ = ss(µ) for all µ ∈ Λ; and

(CK4) sv =
∑

λ∈vΛn tλt
∗
λ for all v ∈ Λ0 and n ∈ Nk .

Define C ∗(Λ) as the universal C ∗-algebra generated by a
Cuntz–Krieger family.
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Structure of C ∗(Λ)

Theorem (Kumjian–Pask, Robertson–S). C ∗(Λ) is simple
iff Λ is aperiodic and cofinal (∀v ∈ Λ0, x ∈ Λ∞, have
vΛx(n) 6= ∅ for large n).

Examples: (Kumjian–Pask): C ∗(Λ× Γ) ∼= C ∗(Λ)⊗ C ∗(Γ);

(Kumjian–Pask): If f : Nl → Nk surjective,
C ∗(f ∗Λ) ∼= C ∗(Λ)⊗ C ∗(ker(f ));

(Kumjian–Pask, Pask–Quigg–Raeburn): c : Λ→ G (abelian)

gives action Ĝ on C ∗(Λ), and C ∗(Λ×c G ) ∼= C ∗(Λ) o Ĝ .

(Farthing–Pask–S): Given Zl y Λ, we have
C ∗(Λ o Zl) ∼= C ∗(Λ) o Zl .
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